Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Molecules ; 27(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35684563

RESUMO

A study on the reactivity of 3-amino α,ß-unsaturated γ-lactam derivatives obtained from a multicomponent reaction is presented. Key features of the substrates are the presence of an endocyclic α,ß-unsaturated amide moiety and an enamine functionality. Following different synthetic protocols, the functionalization at three different positions of the lactam core is achieved. In the presence of a soft base, under thermodynamic conditions, the functionalization at C-4 takes place where the substrates behave as enamines, while the use of a strong base, under kinetic conditions, leads to the formation of C-5-functionalized γ-lactams, in the presence of ethyl glyoxalate, through a highly diastereoselective vinylogous aldol reaction. Moreover, the nucleophilic addition of organometallic species allows the functionalization at C-3, through the imine tautomer, affording γ-lactams bearing tetrasubstituted stereocenters, where the substrates act as imine electrophiles. Taking into account the advantage of the presence of a chiral stereocenter in C-5 substituted γ-lactams, further diastereoselective transformations are also explored, leading to novel bicyclic substrates holding a fused γ and δ-lactam skeleton. Remarkably, an example of a highly stereoselective formal [3+3] cycloaddition reaction of chiral γ-lactam substrates is reported for the synthesis of 1,4-dihidropyridines, where a non-covalent attractive interaction of a carbonyl group with an electron-deficient arene seems to drive the stereoselectivity of the reaction to the exclusive formation of the cis isomer. In order to unambiguously determine the substitution pattern resulting from the diverse reactions, an extensive characterization of the substrates is detailed through 2D NMR and/or X-ray experiments. Likewise, applications of the substrates as antiproliferative agents against lung and ovarian cancer cells are also described.


Assuntos
Antineoplásicos , Lactamas , beta-Lactamas/síntese química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Reação de Cicloadição , Iminas , Lactamas/síntese química , Lactamas/química , Estereoisomerismo , beta-Lactamas/química
2.
Bioorg Med Chem Lett ; 55: 128452, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34780900

RESUMO

Activin receptor-like kinase 2 (ALK2) has been implicated as a key target in multiple rare diseases. Herein, we describe the design of a novel bicyclic lactam series of potent and selective ALK2 inhibitors. This manuscript details an improvement in potency of two orders of magnitude from the initial bicyclic structure as well as a two-fold improvement in cellular potency from the original monocyclic inhibitor. Furthermore, we provide a detailed strategy for progressing this project in the future.


Assuntos
Receptores de Ativinas Tipo I/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , beta-Lactamas/farmacologia , Receptores de Ativinas Tipo I/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , beta-Lactamas/síntese química , beta-Lactamas/química
3.
Bioorg Med Chem ; 46: 116343, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34450571

RESUMO

A series of tricyclic ß-lactams were synthesized and evaluated for in vitro antibacterial activities against carbapenem-resistant Enterobacterales (CREs). Starting from a reported tricyclic ß-lactam that combined the cephalosporin skeleton having a γ-lactone ring with a carboxylic acid group, which was reported as a unique partial structure of Lactivicin, we identified the compound which shows potent antibacterial activities against all tested CREs by introducing sulfoxide. In addition, the sulfoxide-introduced tricyclic ß-lactam also shows a strong therapeutic efficacy in the neutropenic mouse lung infection model. These results indicate that the tricyclic ß-lactam skeleton will show sufficient therapeutic performance in clinical use and therefore can serve as a scaffold in the search for new antibacterial agents against CREs.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , beta-Lactamas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Carbapenêmicos/síntese química , Carbapenêmicos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , beta-Lactamas/síntese química , beta-Lactamas/química
4.
Cell Chem Biol ; 28(9): 1321-1332.e5, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-33826941

RESUMO

Effective treatment of tuberculosis is frequently hindered by the emerging antimicrobial resistance of Mycobacterium tuberculosis. The present study evaluates monocyclic ß-lactam compounds targeting the mycobacterial cell wall remodeling. Novel N-thio-ß-lactams were designed, synthesized, and characterized on the L,D-transpeptidase-2, a validated target in M. tuberculosis. The candidates were evaluated in biochemical assays identifying five compounds presenting target-specific kinetic constants equal or superior to meropenem, a carbapenem currently considered for tuberculosis therapy. Mass spectrometry in line with the crystal structures of five target-ligand complexes revealed that the N-thio-ß-lactams act via an unconventional mode of adduct formation, transferring the thio-residues from the lactam ring to the active-site cysteine of LdtMt2. The resulting stable adducts lead to a long-term inactivation of the target protein. Finally, the candidates were evaluated in vitro against a drug-susceptible and multidrug-resistant clinical isolates of M. tuberculosis, confirming the antimycobacterial effect of these novel compounds.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptidil Transferases/antagonistas & inibidores , beta-Lactamas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Peptidil Transferases/metabolismo , beta-Lactamas/síntese química , beta-Lactamas/química
5.
Eur J Med Chem ; 219: 113439, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33887681

RESUMO

The synthesis and antimicrobial activity of new spiro-ß-lactams is reported. The design of the new molecules was based on the structural modulation of two previously identified lead spiro-penicillanates with dual activity against HIV and Plasmodium. The spiro-ß-lactams synthesized were assayed for their in vitro activity against HIV-1, providing relevant structure-activity relationship information. Among the tested compounds, two spirocyclopentenyl-ß-lactams were identified as having remarkable nanomolar activity against HIV-1. Additionally, the same molecules showed promising antiplasmodial activity, inhibiting both the hepatic and blood stages of Plasmodium infection.


Assuntos
Fármacos Anti-HIV/farmacologia , Antimaláricos/farmacologia , HIV-1/efeitos dos fármacos , Plasmodium/efeitos dos fármacos , beta-Lactamas/química , Fármacos Anti-HIV/síntese química , Antimaláricos/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , HIV-1/isolamento & purificação , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Conformação Molecular , Plasmodium/crescimento & desenvolvimento , Compostos de Espiro/química , Estereoisomerismo , Relação Estrutura-Atividade , beta-Lactamas/síntese química , beta-Lactamas/farmacologia
6.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008788

RESUMO

Monocyclic ß-lactams (azetidin-2-ones) exhibit a wide range of biological activities, the most important of which are antibacterial, anticancer, and cholesterol absorption inhibitory activities. The synthesis of decorated monocyclic ß-lactams is challenging because their ring is highly constrained and consequently reactive, which is also an important determinant of their biological activity. We present the optimized synthesis of orthogonally protected 3-amino-4-substituted monocyclic ß-lactams. Among several possible synthetic approaches, Staudinger cycloaddition proved to be the most promising method for initial ring formation, yielding monocyclic ß-lactams with different substituents at the C-4 position, a phthalimido-protected 3-amino group, and a (dimethoxy)benzyl protected ring nitrogen. Challenging deprotection methods were then investigated. Oxidative cleavage with cerium ammonium nitrate and ammonia-free Birch reduction was found to be most effective for selective removal of ring nitrogen protection. Hydrazine hydrate was used for deprotection of the phthalimido group, and the procedure had to be modified by the addition of HCl in the case of aromatic substituents at the C-4 position. The presented methods and the synthesized 3-amino-4-substituted monocyclic ß-lactam derivatives are an important step toward new ß-lactams with potential pharmacological activities.


Assuntos
Química Farmacêutica , beta-Lactamas/química , beta-Lactamas/síntese química , Antibacterianos/farmacologia , Ciclização , Nitrogênio/química , beta-Lactamas/farmacologia
7.
Mini Rev Med Chem ; 21(5): 536-553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33109046

RESUMO

Triazole ring is a cyclic scaffold containing three heteroatoms of nitrogen. They display a broad variety of biological activities. The uncatalyzed/catalyzed 1,3-dipolar cycloadditions are a chemical reaction between a 1,3-dipole and a dipolarophile to achieve 1,2,3-triazoles. The hybrid approach is an innovative and powerful synthetic tool for the synthesis of two or more distinct entities in one molecule with novel biological activities. Owing to the high potential of ß-lactams to display noticeable biological properties, these compounds have been one of the important ingredients in hybrid molecules. The four-membered lactams have been recognized as a part of penicillin. There are various synthetic protocols for the synthesis of ß-lactams. Staudinger reaction of the Schiff bases with diphenylketenes is a successful and famous strategy for the synthesis of these products. Even though, the number of heterocyclic compounds is limited, plenty of hybrids based on heterocyclic compounds can be designed and prepared. The synthesis of hybrid products of triazole-ß-lactam has proved to be highly challenging. The current review article outlines the diversity and creativity in the elegant synthesis of triazole-ß-lactam hybrids as potential biological agents. Molecules including isatin, ferrocene, bile acid, chalcone, and etc were attached to ß-lactam with triazole linker, as well.


Assuntos
Desenho de Fármacos , Triazóis/química , Triazóis/síntese química , beta-Lactamas/síntese química , Células A549 , Células CACO-2 , Técnicas de Química Sintética , Humanos , Concentração Inibidora 50 , Células PC-3 , Penicilinas/química , Bases de Schiff , Células THP-1
8.
Chem Rec ; 21(2): 284-294, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33241920

RESUMO

Azetidinones and ß-amino acids serve as useful building blocks in synthetic organic chemistry and their structural motifs are often found in biologically active compounds. Due to the importance of these compounds, several synthetic strategies have been developed and availability of new synthetic approaches is highly desirable. In this account, we describe the development of an original method that allows the preparation of ß-lactam and ß-homoproline derivatives not easily accessible through traditional processes. The serendipitous discovery made in our lab in 2000 involved the formation of a ß-lactam by heating a mixture of an alkylidenecyclopropane tethered to a formyl group with N-methylhydroxylamine hydrochloride. Investigation of the process resulted in disclosing an alternative synthetic method of azetidinones based on an acid induced fragmentative rearrangement of cycloadducts of nitrones with suitable methylenecyclopropane derivatives. Herein, the scope of this process is reviewed. In addition, both experimental and computational studies of the mechanism for this peculiar fragmentative rearrangement are presented.


Assuntos
Aminoácidos/química , Oxazóis/química , Prolina/análogos & derivados , beta-Lactamas/síntese química , Prolina/síntese química , Prolina/química , beta-Lactamas/química
9.
Chembiochem ; 22(8): 1448-1455, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33314683

RESUMO

Microbial bile salt hydrolases (BSHs) found in the intestine catalyze the deconjugation of taurine- and glycine-linked bile salts produced in the liver. The resulting bile salts are biological detergents and are critical in aiding lipophilic nutrient digestion. Therefore, the activity of BSHs in the gut microbiome is directly linked to human metabolism and overall health. Bile salt metabolism has also been associated with disease phenotypes such as liver and colorectal cancer. In order to reshape the gut microbiome to optimize bile salt metabolism, tools to characterize and quantify these processes must exist to enable a much-improved understanding of how metabolism goes awry in the face of disease, and how it can be improved through an altered lifestyle and environment. Furthermore, it is necessary to attribute metabolic activity to specific members and BSHs within the microbiome. To this end, we have developed activity-based probes with two different reactive groups to target bile salt hydrolases. These probes bind similarly to the authentic bile salt substrates, and we demonstrate enzyme labeling of active bile salt hydrolases by using purified protein, cell lysates, and in human stool.


Assuntos
Acrilamida/química , Amidoidrolases/metabolismo , Ácidos e Sais Biliares/metabolismo , Corantes Fluorescentes/química , beta-Lactamas/química , Acrilamida/síntese química , Acrilamida/metabolismo , Amidoidrolases/química , Ácidos e Sais Biliares/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Microbioma Gastrointestinal , Humanos , Hidrólise , Estrutura Molecular , beta-Lactamas/síntese química , beta-Lactamas/metabolismo
10.
Sci Rep ; 10(1): 14154, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843690

RESUMO

The cool sensor transient receptor potential melastatin channel 8 (TRPM8) is highly expressed in trigeminal and dorsal root ganglia, playing a key role in cold hypersensitivity associated to different peripheral neuropathies. Moreover, these channels are aberrantly expressed in different cancers, and seem to participate in tumor progression, survival and invasion. Accordingly, the search for potent and selective TRPM8 modulators attracted great interest in recent years. We describe new heterocyclic TRPM8 antagonist chemotypes derived from N-cloroalkyl phenylalaninol-Phe conjugates. The cyclization of these conjugates afforded highly substituted ß-lactams and/or 2-ketopiperazine (KP) derivatives, with regioselectivity depending on the N-chloroalkyl group and the configuration. These derivatives behave as TRPM8 antagonists in the Ca2+ microfluorometry assay, and confirmed electrophysiologically for the best enantiopure ß-lactams 24a and 29a (IC50, 1.4 and 0.8 µM). Two putative binding sites by the pore zone, different from those found for typical agonists and antagonists, were identified by in silico studies for both ß-lactams and KPs. ß-Lactams 24a and 29a display antitumor activity in different human tumor cell lines (micromolar potencies, A549, HT29, PSN1), but correlation with TRPM8 expression could not be established. Additionally, compound 24a significantly reduced cold allodynia in a mice model of oxaliplatin-induced peripheral neuropathy.


Assuntos
Analgésicos/uso terapêutico , Antineoplásicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Piperazinas/uso terapêutico , Canais de Cátion TRPM/antagonistas & inibidores , beta-Lactamas/uso terapêutico , Analgésicos/síntese química , Analgésicos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Temperatura Baixa/efeitos adversos , Simulação por Computador , Citofotometria , Avaliação Pré-Clínica de Medicamentos , Masculino , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxaliplatina/toxicidade , Técnicas de Patch-Clamp , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Piperazinas/síntese química , Piperazinas/farmacologia , Relação Estrutura-Atividade , beta-Lactamas/síntese química , beta-Lactamas/farmacologia
11.
Curr Top Med Chem ; 20(16): 1468-1480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32148196

RESUMO

Cancer, accounts for around 10 million deaths annually, is the second leading cause of death globally. The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents are the main challenges in the control and eradication of cancers, so it is imperative to develop novel anticancer agents. Immense efforts have been made in developing new lead compounds and novel chemotherapeutic strategies for the treatment of various forms of cancers in recent years. ß-Lactam derivatives constitute versatile and attractive scaffolds for the drug discovery since these kinds of compounds possess a variety of pharmacological properties, and some of them exhibited promising potency against both drug-sensitive and drug-resistant cancer cell lines. Thus, ß-lactam moiety is a useful template for the development of novel anticancer agents. This review will provide an overview of ß-lactam derivatives with the potential therapeutic application for the treatment of cancers covering articles published between 2000 and 2020. The mechanisms of action, the critical aspects of design and structureactivity relationships are also discussed.


Assuntos
Antineoplásicos/farmacologia , beta-Lactamas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , beta-Lactamas/síntese química , beta-Lactamas/química
12.
Bioorg Med Chem ; 28(8): 115408, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32165076

RESUMO

This article reports for the first time the synthesis of some novel ß-lactam morpholino-1,3,5-triazine hybrids by a [2+2]-cycloaddition reaction of imines 7a-c, 9a-c and 11 with ketenes derived from substituted acetic acids. The reaction was totally diastereoselective, leading exclusively to the formation of cis-ß-lactams 8a-l, 10a-f and 12a-c. The synthesized compounds were tested for activity towards SW1116, MCF-7 and HepG2 cancer cell lines and non-cancerous HEK-293 cell line by MTT assay. None of the compounds exert an observable effect on HepG2, MCF-7 and HEK-293 cells, but compounds 7b, 8f, 8g, 8l, 10c, and 10e exhibited excellent growth inhibitory activity (IC50 < 5 µM) against SW 1116 cells, comparable to that of doxorubicin (IC50 = 6.9 µM). An evaluation of the antioxidant potential of each of the compounds, performed by diphenylpicrylhydrazyl (DPPH) assay, indicated that 7b, 9a, 9b and 9c have strong free radical scavenging activity. UV absorption titration studies reveal that 7b, 8l, 8g and 8f interact strongly with calf-thymus DNA (CT-DNA) in the order of 8l > 7b > 8f > 8g. Collectively, the in vitro capabilities of some of these morpholino-triazine imines and ß-lactams suggest possible applications to development of new antioxidants and DNA binding therapeutics.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Desenho de Fármacos , Triazinas/farmacologia , beta-Lactamas/farmacologia , Antineoplásicos/síntese química , Antioxidantes/síntese química , Linhagem Celular , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Triazinas/química , beta-Lactamas/síntese química
13.
Steroids ; 159: 108635, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32169578

RESUMO

The steroid nucleus and ß-lactam are prevalent in natural products and drug molecules, the compounds containing such fragments always possess diverse and interesting biological profiles. Presented here is an unprecedented cascade 4-endo N-cyclization/aerobic oxidation sequence that enables the synthesis of biologically relevant steroidal spiro ß-lactams from dienamides. Of note, two continuous quaternary chiral centers were constructed simultaneously in this process, and the title compounds bearing the OH and CN groups are highly functionalized, allowing for late-stage transformations for construction of diverse compound library. The protocol has several advantages such as mild reaction conditions and short reaction time, therefore could serve as a new strategy for synthesizing ß-lactams.


Assuntos
Amidas/química , Compostos de Espiro/síntese química , Esteroides/síntese química , beta-Lactamas/síntese química , Ciclização , Estrutura Molecular , Oxirredução , Compostos de Espiro/química , Estereoisomerismo , Esteroides/química , beta-Lactamas/química
14.
Chemistry ; 26(20): 4496-4499, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32073167

RESUMO

ß-Lactams are important structural motifs because of their ubiquity in natural products and pharmaceuticals. We report herein a Cu-catalyzed intramolecular oxidative C(sp3 )-H amidation for the synthesis of ß-lactams using tBuOOtBu. This method is based on Kharasch-Sosnovsky amidation and does not require prefunctionalization of C(sp3 )-H bonds or the installation of a directing group, thereby allowing for the straightforward synthesis of ß-lactams. Our intramolecular functionalization protocol can be extended to diverse benzylic C(sp3 )-H bonds and shows excellent functional-group tolerance.


Assuntos
Cobre/química , beta-Lactamas/síntese química , Catálise , Ciclização , Estrutura Molecular , Oxirredução , Estresse Oxidativo , beta-Lactamas/química
15.
Eur J Med Chem ; 189: 112050, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31954879

RESUMO

A series of novel 1,4-diaryl-2-azetidinone analogues of combretastatin A-4 (CA-4) have been designed, synthesised and evaluated in vitro for antiproliferative activity, antiapoptotic activity and inhibition of tubulin polymerisation. Glucuronidation of CA-4 by uridine 5-diphosphoglucuronosyl transferase enzymes (UGTs) has been identified as a mechanism of resistance in cancer cells. Potential sites of ring B glucuronate conjugation are removed by replacing the B ring meta-hydroxy substituent of selected series of ß-lactams with alternative substituents e.g. F, Cl, Br, I, CH3. The 3-phenyl-ß-lactam 11 and 3-hydroxy-ß-lactam 46 demonstrate improved activity over CA-4 in CA-4 resistant HT-29 colon cancer cells (IC50 = 9 nM and 3 nM respectively compared with IC50 = 4.16 µM for CA-4), while retaining potency in MCF-7 breast cancer cells (IC50 = 17 nM and 22 nM respectively compared with IC50 = for 4 nM for CA-4). Compound 46 binds at the colchicine site of tubulin, and strongly inhibits tubulin assembly at micromolar concentrations comparable to CA-4. In addition, compound 46 induced mitotic arrest at low concentration in both cell lines MCF-7 and HT-29 together with downregulation of expression of antiapoptotic proteins Mcl-1, Bcl-2 and survivin in MCF-7 cells. These novel antiproliferative and antiapoptotic ß-lactams are potentially useful scaffolds in the development of tubulin-targeting agents for the treatment of breast cancers and chemoresistant colon cancers.


Assuntos
Antineoplásicos/farmacologia , beta-Lactamas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HEK293 , Humanos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Necrose/induzido quimicamente , Ligação Proteica , Estilbenos/química , Survivina/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia , beta-Lactamas/síntese química , beta-Lactamas/metabolismo
16.
Bioorg Med Chem ; 28(4): 115302, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31932194

RESUMO

Antimicrobial resistance is spreading massively in the world and is becoming one of the main health threats of the 21st century. One of the possible strategies to overcome this problem is to modify the known classes of antibiotics in a rational way, with the aim of tuning their efficacy. In this paper, we present the synthesis and the evaluation of the biological activity of a series of two ß-lactam bearing cephalosporin derivatives, in which an additional isolated azetidinone ring, bearing different substituents, is joined to the classical cephalosporanic nucleus by a chain of variable length. A computational approach has been also applied in order to predict the molecular interactions between some representative derivatives and selected penicillin-binding proteins, the natural targets of ß-lactam antibiotics. All these derivatives are active against Gram-positive bacteria, with MIC100 comparable or even better than that of the reference antibiotic ceftriaxone, and show no or very low cytotoxic activity on different cell lines. Overall, these molecules appear to be able to exert their activity in particular against microorganisms belonging to some of the species more involved in the development of multidrug resistance.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , beta-Lactamas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cefalosporinas/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , beta-Lactamas/síntese química , beta-Lactamas/química
17.
Arch Pharm (Weinheim) ; 353(3): e1900293, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31917485

RESUMO

A new series of 1,4-diarylazetidin-2-one derivatives (ß-lactams) were designed and synthesized to evaluate their biological activities as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1 and COX-2 inhibition studies showed that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the 0.05-0.11 µM range, and COX-2 selectivity indexes in the range of 170-703.7. Among the synthesized ß-lactams, 3-methoxy-4-(4-(methylsulfonyl)phenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (4j) possessing trimethoxy groups at the N-1 phenyl ring exhibited the highest COX-2 inhibitory selectivity and potency, even more potent than the reference drug celecoxib. The analgesic activity of the synthesized compounds was also determined using the formalin test. Compound 4f displayed the best analgesic activity among the synthesized molecules. Molecular modeling studies indicated that the methylsulfonyl pharmacophore group can be inserted into the secondary pocket of the COX-2 active site for interactions with Arg513 . The structure-activity data acquired indicate that the ß-lactam ring moiety constitutes a suitable scaffold to design new 1,4-diarylazetidin-2-ones with selective COX-2 inhibitory activity.


Assuntos
Analgésicos/farmacologia , Azetidinas/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dor/tratamento farmacológico , beta-Lactamas/farmacologia , Analgésicos/síntese química , Analgésicos/química , Animais , Azetidinas/síntese química , Azetidinas/química , Gatos , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Modelos Moleculares , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , beta-Lactamas/síntese química , beta-Lactamas/química
18.
Curr Pharm Biotechnol ; 21(4): 287-297, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31713475

RESUMO

BACKGROUND: ß-lactam antibiotics are the most used worldwide for the treatment of bacterial infections. The consumption of these classes of drugs is high, and it is increasing around the world. To date, the best way to produce them is using penicillin G Acylase (PGA) as a biocatalyst. OBJECTIVE: This manuscript offers an overview of the most recent advances in the current tools to improve the activity of the PGA and its pharmaceutical application. RESULTS: Several microorganisms produce PGA, but some bacterial strains represent the primary source of this enzyme. The activity of bacterial PGA depends on its adequate expression and carbon or nitrogen source, as well as a specific pH or temperature depending on the nature of the PGA. Additionally, the PGA activity can be enhanced by immobilizing it to a solid support to recycle it for a prolonged time. Likewise, PGAs more stable and with higher activity are obtained from bacterial hosts genetically modified. CONCLUSION: PGA is used to produce b-lactam antibiotics. However, this enzyme has pharmaceutical potential to be used to obtain critical molecules for the synthesis of anti-tumor, antiplatelet, antiemetic, antidepressive, anti-retroviral, antioxidant, and antimutagenic drugs.


Assuntos
Antibacterianos/síntese química , Biotecnologia/métodos , Penicilina Amidase/metabolismo , Tecnologia Farmacêutica/métodos , beta-Lactamas/síntese química , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/enzimologia , Penicilina Amidase/genética , Temperatura
19.
J Med Chem ; 63(1): 140-156, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31804823

RESUMO

The ß-lactam ring represents a valuable moiety that can induce covalent binding of an inhibitor to its target. In this study, we explored di- and tripeptides with ß-lactam electrophilic warheads as inhibitors of dengue and West Nile virus NS2B-NS3 protease. Tripeptides with a (3S)-ß-lactam moiety displayed the highest activity, with IC50 and EC50 values in the lower micromolar range in biochemical and cellular assays. The activity against dengue protease was in general higher than against West Nile virus protease. The compounds were inactive against the off-targets thrombin and trypsin. Liquid chromatography-mass spectrometry experiments revealed that tripeptide-ß-lactam inhibitors bind to the protease in two distinct binding modes. Only one binding mode leads to a covalent, but reversible, interaction of the ß-lactam ring with the catalytic serine, followed by release of the inhibitor with opened ß-lactam ring. The other binding mode leads to the cleavage of the peptide backbone. This observation provides the first experimental evidence that benzyloxyphenylglycine in flaviviral protease inhibitors is positioned in the prime site of the enzyme.


Assuntos
Antivirais/farmacologia , Oligopeptídeos/farmacologia , Serina Endopeptidases/metabolismo , Inibidores de Serino Proteinase/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , beta-Lactamas/farmacologia , Antivirais/síntese química , Antivirais/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Vírus da Dengue/química , Vírus da Dengue/efeitos dos fármacos , Dipeptídeos/síntese química , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/metabolismo , Ligação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Serina Endopeptidases/química , Inibidores de Serino Proteinase/síntese química , Inibidores de Serino Proteinase/metabolismo , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/efeitos dos fármacos , beta-Lactamas/síntese química , beta-Lactamas/metabolismo
20.
J Med Chem ; 62(22): 10156-10166, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31670514

RESUMO

By dissecting the structure of ß-lactam-based ligands, a new series of compounds was designed, synthesized, and evaluated toward integrins αvß3, α5ß1, and α4ß1. New selective ligands with antagonist or agonist activities of cell adhesion in the nanomolar range were obtained. The best agonist molecules induced significant adhesion of SK-MEL-24 cells and Saos-2 cells as a valuable model for osteoblast adhesion. These data could lead to the development of new agents to improve cellular osseointegration and bone regeneration. Molecular modeling studies on prototypic compounds and αvß3 or α5ß1 integrin supported the notion that ligand carboxylate fixing to the metal ion-dependent adhesion site in the ß-subunit can be sufficient for binding the receptors, while the aryl side chains play a role in determining the selectivity as well as agonism versus antagonism.


Assuntos
Integrinas/agonistas , Integrinas/antagonistas & inibidores , beta-Lactamas/química , beta-Lactamas/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Integrina alfa4beta1/agonistas , Integrina alfa4beta1/antagonistas & inibidores , Integrina alfa4beta1/metabolismo , Integrina alfa5beta1/agonistas , Integrina alfa5beta1/antagonistas & inibidores , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/agonistas , Integrina alfaVbeta3/antagonistas & inibidores , Integrina alfaVbeta3/metabolismo , Integrinas/metabolismo , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Osteoblastos/efeitos dos fármacos , Relação Estrutura-Atividade , beta-Lactamas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...